Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hasegawa, Yasuhisa (Ed.)Advancing robotic grasping and manipulation requires the ability to test algorithms and/or train learning models on large numbers of grasps. Towards the goal of more advanced grasping, we present the Grasp Reset Mechanism (GRM), a fully automated apparatus for conducting large-scale grasping trials. The GRM automates the process of resetting a grasping environment, repeatably placing an object in a fixed location and controllable 1-D orientation. It also collects data and swaps between multiple objects enabling robust dataset collection with no human intervention. We also present a standardized state machine interface for control, which allows for integration of most manipulators with minimal effort. In addition to the physical design and corresponding software, we include a dataset of 1,020 grasps. The grasps were created with a Kinova Gen3 robot arm and Robotiq 2F-85 Adaptive Gripper to enable training of learning models and to demonstrate the capabilities of the GRM. The dataset includes ranges of grasps conducted across four objects and a variety of orientations. Manipulator states, object pose, video, and grasp success data are provided for every trial.more » « less
-
Rotation manipulation tasks are a fundamental component of manipulation, however few benchmarks directly measure the limits of a hand's ability to rotate objects. This paper presents two benchmarks for quantitatively measuring the rotation manipulation capabilities of two-fingered hands. These benchmarks exists to augment the Asterisk Test to consider rotation manipulation ability. We propose two benchmarks: the first assesses a hand's limits to rotate objects clockwise and counterclockwise with minimal translation, and the second assesses how rotation manipulation impacts a hand's in-hand translation performance. We demonstrate the utility of these rotation benchmarks using three generic robot hand designs: 1) an asymmetrical two-linked versus one-linked gripper (2v1), 2) a symmetrical two-linked gripper (2v2), and 3) a symmetrical three-linked gripper (3v3). We conclude with a brief comparison between the hand designs and a observations about contact point selection for manipulation tasks, informed from our benchmark results.more » « less
-
In this paper we investigate the influence interfaces and feedback have on human-robot trust levels when operating in a shared physical space. The task we use is specifying a “no-go” region for a robot in an indoor environment. We evaluate three styles of interface (physical, AR, and map-based) and four feedback mechanisms (no feedback, robot drives around the space, an AR “fence”, and the region marked on the map). Our evaluation looks at both usability and trust. Specifically, if the participant trusts that the robot “knows” where the no-go region is and their confidence in the robot's ability to avoid that region. We use both self-reported and indirect measures of trust and usability. Our key findings are: 1) interfaces and feedback do influence levels of trust; 2) the participants largely preferred a mixed interface-feedback pair, where the modality for the interface differed from the feedback.more » « less
-
null (Ed.)Automated systems like self-driving cars and “smart” thermostats are a challenge for fault-based legal regimes like negligence because they have the potential to behave in unpredictable ways. How can people who build and deploy complex automated systems be said to be at fault when they could not have reasonably anticipated the behavior (and thus risk) of their tools?more » « less
An official website of the United States government

Full Text Available